Performance Evaluation of Single Mode Fiber Optics for Long Distance Optical Communication

نویسنده

  • Sabah Hawar Saeid
چکیده

The goal of an optical fiber communication system is to transmit the maximum number of bits per second over the maximum possible distance with the fewest errors. Single mode optical fibers have already been one of the major transmission media for long distance telecommunication, with very low-losses and widebandwidth. The most important properties that affect system performance are fiber attenuation and dispersion. Attenuation limits the maximum distance. While dispersion of the optical pulse as it travels along the fiber limits the information capacity of the fiber.But using of optical amplifiers allows us to eliminate the limiting of the length of section between the transmitter and the receiver. Evaluating the performance of optical fiber communication systems using only analytical techniques is very difficult. In these cases it is important using computer aided techniques, like simulation, to study the performance of these systems. This paper will describe a computer simulation program for the analysis of some of optical communication components like amplifiers, and filters, used in single mode optical fiber systems for compensating the attenuation and dispersion caused by the long distance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer Simulation and Performance Evaluation of Single Mode Fiber Optics

The goal of an optical fiber communication system is to transmit the maximum number of bits per second over the maximum possible distance with the fewest errors. Single mode optical fibers have already been one of the major transmission media for long distance telecommunication, with very low-losses and widebandwidth. The most important properties that affect system performance are fiber attenu...

متن کامل

Fabrication and Characterization of the Fiber Optical Taper for a Surface Plasmon Resonance Sensor

For a fiber optical surface plasmon resonance (SPR) sensor a short part of its cladding should be removed to coat a thin layer of a metal. Usually this is problematic when an optical fiber with small core diameter is used. In this paper, a new method using µliter droplet of the HF acid for short fiber optical taper fabrication is reported. Using this method in a multi-mode optical fiber w...

متن کامل

Simulation, implementation, and analysis of an optical fiber bundle distance sensor with single mode illumination.

A simulation model for an optical fiber bundle distance sensor with a single mode fiber as the illumination fiber and a multimode fiber as the receiving fiber is presented. Approximating the illumination light exiting the single mode fiber as having a Gaussian intensity profile, a closed-form solution of the reflected light coupled into the receiving fiber was derived. A distance sensor was imp...

متن کامل

Thermal Effects Study on Stimulated Brillouin Light Scattering in Photonic Crystal Fiber

we investigate the temperature-dependences of the Brillouin frequency shift in three different kind of single-mode fibers using a heterodyne method for sensing temperature. Positive dependences coefficients of 0.77, 0.56 and 1.45MHz/0C are demonstrated for 25 km long single-mode fiber, 10 km long non-zero dispersion shifted fiber and 100 m photonic crystal fiber, respectively. The results indic...

متن کامل

Supermodes for optical transmission.

In this paper, the concept of supermode is introduced for long-distance optical transmission systems. The supermodes exploit coupling between the cores of a multi-core fiber, in which the core-to-core distance is much shorter than that in conventional multi-core fiber. The use of supermodes leads to a larger mode effective area and higher mode density than the conventional multi-core fiber. Thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013